

Maxim > Design Support > Technical Documents > Application Notes > Digital Potentiometers > APP 4557 Maxim > Design Support > Technical Documents > Application Notes > Optoelectronics > APP 4557

Keywords: laser drivers, digital resistors, op amps, photodiodes

APPLICATION NOTE 4557

Digital Resistor Sets Operating Power for Laser Driver

Mar 31, 2011

Abstract: Adding an op amp and a digital potentiometer to a standard laser-driver circuit produces a driver that varies the laser's power-set point in response to temperature, generating a photodiode current that is a linear function of the potentiometer value.

A similar version of this article appeared in the March 15, 2007 issue of *ED* magazine.

The MAX3740 VCSEL laser driver and DS1859 dual, temperature-controlled digital resistor are popular choices for SFP and SFF fiber-optic systems, due to their small size and high level of integration. The MAX3740 uses a monitoring photodiode and automatic power-control loop (APC) to compensate the laser power for temperature effects and aging. Photodiode responsivity can vary as much as 40%, so the system needs some additional compensation. That can be achieved with a digital resistor, which varies the power set-point in response to temperature.

A resistor between the MAX3740 reference pin (REF) and the power monitor photodiode (MD) sets the photodiode current. The power-control loop then drives the laser diode to the intensity that delivers that current. The problem with this approach is a too-low control voltage: the nominal voltage at MD is 1.6V and the nominal voltage at REF is 1.8V, leaving only 0.2V across the resistor for setting the photodiode current.

Digital resistors like those in the DS1859 can have minimum resistances as high as $1k\Omega$, which in turn gives a maximum current of only 200µA. The resulting current vs. resistance function is very nonlinear, with poor resolution at high currents. You can add a fixed resistor between REF and MD to raise the maximum current, but the adjustment range is still only 200µA. (Nor does the fixed resistor provide any improvement in nonlinearity and resolution.) A graph of photodiode current vs. DS1859 resistance (lower-left trace in **Figure 1**) shows the response of a circuit with series resistor value of 806Ω , which biases up the response by 248μ A.

Figure 1. The MAX3740 laser driver with external photodiode produces a nonlinear control voltage for the laser (lower-left trace). Adding a digital resistor and op amp (Figure 2) produces the linear control voltage shown. The solution to these problems (**Figure 2**) is to allow the resistor between REF and MD (R1) to set the maximum photodiode current, and then subtract a current proportional to the DS1859 resistance. The subtracted current comes from the op-amp output, which steals current from the photodiode through R2. The op amp shown was chosen for its small size (SC70 package) and low cost. It is powered by the same +3.3V power supply as the digital resistor (DS1859) and laser driver (MAX3740).

Figure 2. An external op amp and digital resistor (DS1859) enable the MAX3740 laser driver to generate the linear control voltage shown in Figure 1.

The op amp generates a voltage (V_O) proportional to the value of MD (REF - MD) and the DS1859

value. In turn, the voltage generates a current through R2 proportional to the difference between the voltages at V_O and MD. The effects at MD cancel out, so the current through R2 depends only on (REF - MD), a stable 0.2V, and the DS1859 value. Current through the photodiode equals the current thru R1 (803µA) minus the current thru R2. Thus, photodiode current is a linear function of the potentiometer value, as illustrated in Figure 1. With appropriate resistor values, this circuit works with any value potentiometer and provides current over any range. Its only limitation is the current-drive capability of the op amp. Design calculations are:

Derivation of equations

Equation for op amp output voltage

$$V_{OUT} = V_{REF} \times \left(\frac{-R_{DS1859}}{R_3}\right) + V_{MD} \times \left(1 + \frac{R_{DS1859}}{R_3}\right)$$

Rearrange terms

$$V_{OUT} = V_{MD} + \frac{(V_{MD} - V_{REF}) \times R_{DS1859}}{R3}$$

Substitute 0.2V for reference voltage - modulation voltage

$$V_{OUT} = V_{MD} - \frac{0.2V \times R_{DS1859}}{R3}$$

Equation for current through R2 Substitute in equation for op amp output voltage

$$I_{R2} = \frac{V_{OUT} - V_{MD}}{R2} \qquad \qquad I_{R2} = \frac{\left(V_{MD} - \frac{0.2V \times R_{DS1859}}{R3}\right) - V_{MD}}{R2}$$

Modultion voltage terms cancel out

$$I_{R2} = \frac{-0.2V \times R_{DS1859}}{R3 \times R2}$$

Equation for current through Substitute 0.2V for reference voltage - modulation voltage

 $I_{R1} = \frac{V_{REF} - V_{MD}}{R1} \qquad \qquad I_{R1} = \frac{0.2V}{R1}$

Equation for current through photo diode

Substitute equations for R1 current and R2 current

$$I_{PD} = \frac{0.2V}{R1} - \frac{0.2V \times R_{DS1859}}{R3 \times R2}$$

Where R1 = 249 Ω R2 = 1240 Ω R3 = 10000 Ω I_{PD} = 787 μ A, DS1859 resistance = 1k Ω I_{PD} = -3.3µA, DS1859 resistance = 50k Ω

Design procedure

Select desired photodiode min and max current

IpDmax ≡ 800 × 10 ⁻⁶ A	I _{PDmin} ≡ 0A
IPDdelta = IPDmax - IPDmin	IPDdelta = 8 × 10 ⁻⁴ A

DS1859 min and max values

RDS1859max ≡ 50000Ω	RDS1859min ≡ 1000Ω
RDS1859delta = RDS1859max - RDS1859min	RDS1859delta = 4.9 × 10 ⁴ Ω

Op amp output voltage range

V _{OUTmax} ≡2.0V	V _{OUTmin} ≡ 0V
VouTdelta = VouTmax - VouTmin	VouTdelta = 2V

Modulation voltage min and max

V _{MDmin} ≡ 1V	V _{MDmax} ≡ 2V
VMDdelta = VMDmax - VMDmin	V _{MDdelta} = 1V
$R1 = \frac{0.2V}{IPDmax}$	R1 = 250Ω
R3 = $\frac{0.2V \times R_{DS1859delta}}{V_{OUTdelta} - V_{MDdelta}}$	$R3 = 9.8 \times 10^3 \Omega$
R2 = 0.2V × RDS1859delta IPDdelta × R3	$R2 = 1.25 \times 10^{3} \Omega$

Related Parts		
DS1859	Dual, Temperature-Controlled Resistors with Internally Calibrated Monitors	Free Samples
MAX4245	Ultra-Small, Rail-to-Rail I/O with Disable, Single/Dual- Supply, Low-Power Op Amps	Free Samples

More Information

For Technical Support: http://www.maximintegrated.com/support For Samples: http://www.maximintegrated.com/samples Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 4557: http://www.maximintegrated.com/an4557 APPLICATION NOTE 4557, AN4557, AN 4557, APP4557, Appnote4557, Appnote 4557 Copyright © by Maxim Integrated Products Additional Legal Notices: http://www.maximintegrated.com/legal