

Keywords:
USB, HID, mouse, microcontroller, interface, video game controller

TUTORIAL 5884

TURN ANY VIDEO GAME CONTROLLER INTO A
 USB MOUSE

By:
Mohamed Ismail

Abstract: This tutorial provides instructions on how to make a USB mouse using an old video game
 controller.

A similar version of this article appeared in February 2015 in Electronic Products.

Introduction
As the latest and greatest gaming systems debut every few years, my stockpile of old video game
 controllers grows at the same pace. Many of the older game consoles were designed with nonstandard
 proprietary connectors. Sadly, this means that, even though they are still fully functional, most of my old
 game controllers are doomed to collecting dust on the shelf. However, with just a little modification, these
 controllers can be given new life and repurposed to serve as a nifty interface with modern computers. The
 know-how to make a USB mouse or keyboard out of old components and spare parts can be both a fun
 and informative way to add functionality to any embedded system with user-control inputs.

Examine Your Old Controller
The basic requirements to make a USB mouse are simple. The mouse needs two buttons for left and right
 click, and a means to control horizontal and vertical movement.

These essential criteria have been implemented in various ways with differing components and complexity.
 Gamepads from the 1980s and early 1990s used simple pushbuttons connected to an 8-bit or 16-bit latch.
 Latching the data every few milliseconds, the game console could easily clock out and interpret which
 buttons were pressed. Later generations of controllers integrated analog-to-digital converters (ADCs) to
 sense how far a joystick was moved from its resting position, thus allowing for different movement speeds
 instead of the “on-off” control of a simple button. More modern controllers even integrated an
 accelerometer, which gives the user greater variety of control through body movement. Regardless of the
 controller that is used, there should be plenty of information on the Internet about how its data is encoded.
 Once you get a grasp of how the game controller collects and stores the inputs, formatting the data for USB
 is the next step.

Make the Mouse
USB is an extremely versatile protocol, and the host system must be ready to accept a wide variety of data
 packets from whatever device is connected. When the end device is first attached, it must describe its
 identity, capabilities, and expected data format to the host in a process called “enumeration.” Luckily, most
 host systems have built-in drivers for commonly used device classes (think flash drives, keyboards,
 printers, etc.). If an end device enumerates in a certain class, the host computer can use the device without
 any additional software. A mouse falls into the Human Interface Devices (HID) class, so enumerating under
 this class will make the mouse plug and play.

Page 1 of 6

http://www.maximintegrated.com/en/
http://www.electronicproducts.com/Analog_Mixed_Signal_ICs/Power_Management/Turn_any_video_game_controller_into_a_USB_mouse.aspx

When a device first attaches to a USB port, the host sends SETUP data to give the device a chance to
enumerate. The end device must decode the SETUP packets and send the device descriptor, followed by
its configuration, interface, class, endpoint, and report descriptors. Descriptors are table data that contain
detailed information about device operation. Everything from device manufacturer, data buffer size, and
communication speed to power consumption and data format is reported in the various descriptors during
enumeration.

The report descriptor controls how the computer receives and interprets the data sent over USB. We can
identify the left-click and right-click features of the mouse according to the predefined usages in the HID
class. The two buttons in our controller correspond to two inputs, each of 1 bit size and each with a logical
value of 0 or 1.

USAGE_PAGE (Button)
USAGE_MINIMUM (Button 1)
USAGE_MAXIMUM (Button 2)
LOGICAL_MINIMUM (0)
LOGICAL_MAXIMUM (1)
REPORT_COUNT (2)
REPORT_SIZE (1)
INPUT (Data, Var, Abs)

Since we are only using 2 bits of the data byte, we need another report size of 6 bits that the computer
interprets as constants. Note that we do not include any usages for these latter bits.

REPORT_COUNT(1)
REPORT_SIZE(6)
INPUT (Cnst, Var, Abs)

The next 2 bytes that we send correspond to the x-axis and y-axis data, respectively. The data for each
direction has its own report size of 8 bits, and can have a logical value in the range of -127 to 127 for an 8-
bit signed integer.

USAGE_PAGE (Generic Desktop)
USAGE (X)
USAGE(Y)
LOGICAL_MINIMUM (-127)
LOGICAL_MAXIMUM (127)
REPORT_SIZE (8) R
EPORT_COUNT (2)
INPUT (Data, Var, Rel)

Page 2 of 6

unsigned char RepD[]= // Report descriptor
{
0x05, 0x01, // USAGE_PAGE (Generic Desktop)
0x09, 0x02, // USAGE (Mouse)
0xA1, 0x01, // COLLECTION (Application)
0x09, 0x01, // USAGE (Pointer)
0xA1, 0x00, // COLLECTION (Physical)
0x05, 0x09, // USAGE_PAGE (Button)
0x19, 0x01, // USAGE_MINIMUM (Button 1)
0x29, 0x02, // USAGE_MAXIMUM (Button 2)
0x15, 0x00, // LOGICAL_MINIMUM (0)
0x25, 0x01, // LOGICAL_MAXIMUM (1)
0x95, 0x02, // REPORT_COUNT (2)
0x75, 0x01, // REPORT_SIZE (1)
0x81, 0x02, // INPUT (Data,Var,Abs)
0x95, 0x01, // REPORT_COUNT (1)
0x75, 0x06, // REPORT_SIZE (6)
0x81, 0x01, // INPUT (Cnst,Var,Abs)
0x05, 0x01, // USAGE_PAGE (Generic Desktop)
0x09, 0x30, // USAGE (X)
0x09, 0x31, // USAGE (Y)
0x15, 0x81, // LOGICAL_MINIMUM (-127)
0x25, 0x7F, // LOGICAL_MAXIMUM (127)
0x75, 0x08, // REPORT_SIZE (8)
0x95, 0x02, // REPORT_COUNT (2)
0x81, 0x06, // INPUT (Data,Var,Rel)
0xC0, // END_COLLECTION
0xC0 // END_COLLECTION
};

So now you ask, what is the actual takeaway from this report descriptor explanation? By using the report
 descriptor above, all we need to do is format the data from our game controller in the following format
 (Table 1) and the host system will be able to properly understand the input.

Since each line of the report descriptor above has a predefined value in the HID Usage Tables. The
following array represents the total report descriptor for our mouse example.

Page 3 of 6

1

Byte 0 0 0 0 0 0 0 Right click Left click

Byte 1 X-axis displacement (signed)

Byte 2 Y-axis displacement (signed)

It is important to note that the directional data is both signed and relative to the cursor’s current position. If a
-1 is sent as the x-axis displacement, the cursor will move one pixel to the left. A +1 in the x-axis
displacement byte moves the cursor one pixel to the right. The same applies to the y-axis, with negative
values moving the cursor up and positive values moving the cursor down.

Two different methods for creating a USB interface can now be shown. You can use a MAXQ612 or
 MAXQ622 16-bit microcontroller with built-in USB serial interface engine, or use any microcontroller with a
 MAX3420E or MAX3421E USB peripheral controller. Figure 1 shows the first implementation. The game
 controller which I chose has a convenient I C interface. Using the MAXQ622 to serve as the I C master
 interface to communicate with the game controller, parse the data into the format shown in Table 1 above
 and handle the USB transactions. Now a single-chip mouse solution can be achieved.

Figure 1. Diagram of a single-chip USB mouse. The MAXQ622 microcontroller and MAXQ622 evaluation
 (EV) kit are featured in this design.

Other than external bypass capacitors, pullup resistors on the I C lines, and a crystal oscillator, no
 additional components are required for this example design.
Figure 2 shows a more generic solution using
 the MAX3420E USB peripheral controller with any microcontroller equipped with I C and SPI functions.

2 2

2

2

7 6 5 4 3 2 1 0

Table 1. USB Mouse Data Format

Page 4 of 6

Figure 2. Diagram of a USB mouse, now using the MAX3420E USB peripheral controller and the
 MAX3420E EV kit. While any microcontroller with I C and SPI capabilities could be used, in this case we
 continue to use the MAXQ622.

The MAX3420EEVKIT-2 provides headers for all interface pins, which include the MOSI, MISO, #SS, and
 SCLK pins for SPI communication and the INT pin to signal interrupts to the microcontroller. The
 MAX3420EEVKIT-2 has an on-board Atmel ATtiny2313 microcontroller that, with custom firmware, could
 implement a bit-banged I C bus to directly interface to the game controller. In this example, the MAXQ622
 EV kit, which has both I C and SPI peripherals, was used as the generic microcontroller.

Conclusion
Now you know how to use an old video game controller and any microcontroller with the proper interface to
 implement a USB mouse. The process is as easy as connecting a few jumpers and downloading the
 firmware.

The code provided here has several functions. It continually monitors the USB bus for any activity or
 incoming requests from the host; it periodically polls the game controller for new data, sends this data to
 the host, and blinks LEDs as status/time indicators. Both implementations are equipped to recognize USB
 bus resets and USB bus suspend events. Both perform remote wakeup of the host and respond
 appropriately to all host CONTROL transfers.

Perhaps you want to know more or investigate the possibilities further? You can find more nitty-gritty details
 about how to handle the USB protocol, in the Maxim Integrated application note 3690, "USB enumeration
 code (and more) for the MAX3420E."

2

®
2

2

Page 5 of 6

http://www.maximintegrated.com/en/an3690
http://www.maximintegrated.com/en/an3690

References

1. Universal Serial Bus (USB) HID Usage Tables, 10/28/2004, Version 1.12, USB Implementers Forum,
Inc. https://www.usb.org/sites/default/files/documents/hut1_12v2.pdf at www.usb.org/developers/hidpage/.

Atmel is a registered trademark and registered service mark of Atmel Corporation.

Related Parts

MAX3420E USB Peripheral Controller with SPI Interface Free Samples

MAX3420EEVKIT-
2

Evaluation Kit for the MAX3420E

MAX3421E USB Peripheral/Host Controller with SPI Interface Free Samples

MAXQ612 16-Bit Microcontrollers with Infrared Module and Optional
USB

Free Samples

MAXQ622 16-Bit Microcontrollers with Infrared Module and Optional
USB

Free Samples

More Information

For Technical Support: http://www.maximintegrated.com/en/support

For Samples: http://www.maximintegrated.com/en/samples

Other Questions and Comments: http://www.maximintegrated.com/en/contact

Application Note 5884: http://www.maximintegrated.com/en/an5884

TUTORIAL 5884,
AN5884,
AN 5884,
APP5884,
Appnote5884,
Appnote 5884

© 2014 Maxim Integrated Products, Inc.

The content on this webpage is protected by copyright laws of the United States and of foreign countries.
 For requests to copy this content, contact us.

Additional Legal Notices: http://www.maximintegrated.com/en/legal

Page 6 of 6

https://www.usb.org/sites/default/files/documents/hut1_12v2.pdf
http://www.usb.org/developers/hidpage/
http://www.maximintegrated.com/en/products/MAX3420E
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX3420E
http://www.maximintegrated.com/en/products/MAX3420EEVKIT-2
http://www.maximintegrated.com/en/products/MAX3420EEVKIT-2
http://www.maximintegrated.com/en/products/MAX3421E
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX3421E
http://www.maximintegrated.com/en/products/MAXQ612
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAXQ612
http://www.maximintegrated.com/en/products/MAXQ622
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAXQ622
http://www.maximintegrated.com/en/support
http://www.maximintegrated.com/en/samples
http://www.maximintegrated.com/en/contact
http://www.maximintegrated.com/en/an5884
https://support.maximintegrated.com/tech_support/submit_question.mvp?pl_id=0
http://www.maximintegrated.com/en/legal

	maximintegrated.com
	Turn Any Video Game Controller into a USB Mouse - Tutorial - Maxim

